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amplitudes, and there were somewhat larger delays
for P(6) and the nondegenerate cases, respectively. The
expected similarities between the models was explained
earlier, and these calculations indeed show that in the
absence of an independent way of determining 6, there
is no way to distinguish easily which case one is dealing
with if observations are restricted to the region around
the maximum delay.

V. CONCLUSIONS

Some modifications of coherent pulse propagation in
attenuating media which originate from degeneracy
have been examined. It is found that the effect of SIT,
first described by Hahn and McCall, is modified in an
essential way. Among these modifications are the de-
velopment of pulse shapes for large 6 which are charac-
teristic of the degeneracy, the association of a finite
loss with propagation, a reduction of delay times, and
the suppression of pulse separation. Unfortunately, the
latter three qualitatively tend to modify the propaga-
tion behavior in a manner similar to the introduction
of a finite T'y. It also appears that, in the presence of
attenuation, propagation can occur at constant angle
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(fixed area attenuation). This implies considerable
pulse broadening and resembles nondegenerate SIT, in
accord with experimental findings. The resemblance
is so close, that on the basis of transmission curves,
delay curves, and pulse shapes alone is hard to dis-
tinguish between the two.

At high excitations [6(0)>>7 ] sufficiently degenerate
media depart from the similarity to the nondegenerate
case. A coherent saturation occurs which induces pulse
sharpening. This type of behavior provides an essential
distinction between degenerate and nondegenerate
media. It can be understood without the additional
complication of inhomogeneous broadening. Indeed,
the influence of inhomogeneous broadening on the high-
intensity behavior of a degenerate system can be re-
garded as arbitrarily small if the saturation width is
sufficiently large.
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The theory of periodic Schottky deviations is studied numerically. Corrections to experimental surface
reflection coefficients for several refractory metals are given. The corresponding corrected estimates of the
surface inner potentials are in fair agreement with bulk band-theory calculations.

I. INTRODUCTION

N estimate of the electron inner potential of metals

in the surface region and the confirmation of
proposed shapes of the one-dimensional surface-poten-
tial barrier can be made by measuring the complex
surface reflection coefficient u (u= || e*re#).! Reflection
coefficients that have been obtained from an analysis
of periodic deviations in the Schottky effect in therm-
ionic emission from polycrystalline wires have been
reported for several metals.2* There are several
approximate analytic expressions that describe the

1 C. Herring and M. H. Nichols, Rev. Mod. Phys. 21, 185

(1949).

21. J. D’Haenens and E. A. Coomes, Phys. Rev. Letters 17, 516
(1966).

3R. E. Thomas and G. A. Haas, Phys. Rev. Letters 19, 1117
(1967).

4W. C. Niehaus, in Proceedings of the Twenty-Ninth Annual
Conference on Physical Electronics, Yale University, New Haven,
Conn., 1969 (unpublished).

periodic deviations.’® However, the expression given
by Miller and Good® has been favored more recently by
experimentalists because the generalized WKB wave
functions used by Miller and Good are more accurate
for realistic one-dimensional barriers than the usual
WKB wave functions.!:57 Recent experimental results,
though, have pointed out two discrepancies. First, if
the Sommerfeld box model® of the surface potential is
used to calculate reflection coefficients, it is necessary

§ S.) C. Miller, Jr., and R. H. Good, Jr., Phys. Rev. 92, 1367
(1953).

6D. W. Juenker, G. S. Colladay, and E. A. Coomes, Phys.
Rev. 90, 772 (1953); D. W. Juenker, <bid. 99, 1155 (1955); P. H.
Cutler and J. J. Gibbons, zbid. 111, 394 (1958).

7S. C. Miller, Jr., and R. H. Good, Jr., Phys. Rev. 91, 174
(1953).

8 The Sommerfeld box model of a metal is a one-dimensional
surface potential model in which the metal’s inner potential is a
constant —W,. This constant value joins the classical image
motive just outside the metal surface. See Fig. 1 and Eq. (1) of
Ref. 5, and footnote 9 of Ref. 2.
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to assume values of the inner potential W, as high as
24 eV for Mo and 28 eV for Re,? whereas band-structure
calculations indicate values of only 12 eV® and 16 eV,
respectively. Furthermore, using the free-electron-gas
model, such high values of W, can only be explained by
assuming that essentially all valence electrons should be
treated as free. The second discrepancy is that the
magnitude of the experimental surface reflection co-
efficient |u| is field-dependent.?# The analytic expres-
sions®¢ describing the periodic deviations have been
based on the assumption that u is essentially field-
independent.

Because of the above two discrepancies and because
of uncertainty in the accuracy of the least-squares data-
reduction methods, a numerical study of the theory of
periodic deviations in the Schottky effect was made in
order to determine whether or not the discrepancies
were real, or due to mathematical approximations in
the theory®7 to model potentials, or to data-reduction
techniques.

II. CALCULATIONS

The following approach was used: A mock periodic
deviations experiment was performed in which hypo-
thetical thermionic current densities were numerically
generated. Equation (1a) describes the thermionic
electron-emission current density J(f) from a free-
electron-gas model in which the electron transmission
coefficient D (e, f) is a function of the energy e associated
with the component of momentum normal to the
surface.

] 0
Hﬁ=;i D(e,f)e 7 de, (1a)
where o
To=[drme(kT)2/ 1 e—c¢/¥T | (1b)

where k is the Boltzmann constant, % is Planck’s con-
stant, m and e are the free-electron mass and charge,
respectively, ¢ is the electron work function, 7" is the
temperature in °K, fis the electrostatic field, e is the
electron energy with respect to a zero at the barrier
maximum for f=0 (i.e., x=), and W, is the electron
inner potential. Equation (1a) can be approximated to
several significant figures by

2.1eV
ﬂﬁ=B/ D(e,f)e9H de, (10)

1

where B is rather arbitrary in these calculations [see
Eq. (5)] and the values of e=2.1 €V and e=¢; were
chosen as the upper and lower limits of integration,
respectively, for the desired accuracy.

Since periodic deviations are an electron interference
phenomenon, it is convenient to discuss the total

9 T. L. Loucks, Phys. Rev. 139, A1181 (1965). Also see T. L.
Loucks, zbid. 143, 506 (1966).
LT, F. Mattheiss, Phys. Rev. 151, 450 (1966).
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reflection [1—D(e, f)] in terms of two reflecting regions
and to calculate each reflection coefficient separately.
As was first suggested by Herring and Nichols! and
later used in various theories,® ¢ the region of the metal
surface itself and that of the barrier maximum can be
characterized by the complex reflection coefficients u
and A, respectively. It was further assumed in these
theories®® that (1) these two reflecting regions are
separated by a nonreflecting region that supports WKB
wave functions, and. (2) the electron reflection that
occurs from the metal surface up to this WKB region is
field-independent. In order to check numerically if such
a nonreflecting region did, in fact, exist, and if it did
exist, how far from the surface it extended, the following
approach was used. For a given energy e, a purely
ingoing plane wave was set up inside the metal. After
choosing a value of the field f, the Schrédinger equation
was numerically integrated out through the surface to
some point X; between the metal surface and the barrier
maximum. The integrating method was similar to that
described by Blatt!* with special starting and stopping
procedures. At the point X; the reflection coefficient
u(e, f) was calculated by joining the numerical solution
to WKB wave functions. A nonreflecting region was
determined when u(e, f) did not change appreciably as
X; was varied. As an additional check, the WKB
criterion given by Eq. (3) below was used. The field
independence was determined when u(e,f) did not
change appreciably as the field f was varied from 10*
to 10° V/cm. In the neighborhood of X;=4 A, a non-
reflecting region did exist that was essentially field-
independent, in that

|/~"(€yf2)|_l_/~"(€5f1)| -<_0027
[u(ef)]

where f~10¢ V/cm, f~10° V/cm, and fy~10° V/cm.
For X;>4A, the field dependence of the u reflection
coefficient increased substantially with distance from
the metal surface. Consequently, it can be concluded
that if real surface potentials do not approach the
classical image motive sufficiently well beyond X;=4 A,
the analytic expressions®® describing periodic devi-
ations should not be used in their present forms.

After the point X;=4 A was chosen, the \ reflection
coefficient was calculated in the following manner. For
a given energy e and field f, a purely outgoing WKB
wave function was set up at a point X ; greater than the
barrier maximum. The point X, was determined by
requiring that at X, the WKB criterion® be sufficiently
well satisfied, i.e.,

[hp'/p*| La—3(pp"/p?) J P10, 3)

where p is the normal momentum, % is Planck’s con-

)

1 J, C. Blatt, J. Comput. Phys. 1, 382 (1967).

2], L. Powell and B. Craseman, in Quantum Mechanics
(Addison-Wesley Publishing Co., Inc., Reading, Mass., 1961),
p. 142.
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F16. 1. Numerically generated periodic deviations from a Sommerfeld box metal with inner potential W,=15 eV and temperature
T=1500°K. The “x” marks are the reduced data. The solid curve is the Miller-Good F. term resulting from a least-squares fit to the
data. The best-fit values of the surface reflection coefficient are |u|=0.28 and argu= —0.46.

stant, and the primes denote derivatives with respect
to distance. (X, varied from 200A for f>1.5X105
V/cm to 400 A for f<5X10¢ V/cm.) The Schrédinger
equation was then integrated to X,=4A (using as
many as 7000 integration steps) where the reflection
coefficient A(e,f) was calculated using the same WKB
wave functions at X; that were used in the calculation
of u(e,f).

The total transmission coefficient D(e,f) was ob-
tained by using the values of u and X in the following
relationship:

A= (&N U= uleN]
D(ef)= M)l w(ef)| ‘
il—ﬂ(é,f))\(é,f)P

The values of D(e,f) obtained using Eq. (4) were
compared with several values of D(ef) that were
obtained by integrating the Schrodinger equation over
the entire range of X. The values of D(e,f) obtained
using both methods were the same (to about 10 signi-
ficant figures).

Similar computer calculations of electron reflection
coefficients for one-dimensional surface barriers have
been conducted in the past by Cutler and Davis®® and
by Belford et al.* In neither of these studies was any
attempt made to separate and analyze the effect of the
surface region per se from the rest of the barrier, as is
done in the theoretical treatments of periodic devi-
ations.’-¢ Even though periodic deviations were not
generated by Cutler and Davis,'® good agreement exists

13 P, H. Cutler and J. C. Davis, Surface Sci. 1, 194 (1964).

14 G, G. Belford, A. Kuppermann, and T. E. Phipps, Phys. Rev.
128, 524 (1962).

©)

between their calculated total reflection coefficients and
those calculated in this study.

Using the notation in Ref. 3, the Schottky curve
should be of the form

logioj(§) =P+ (Q/T)é+F(|ul argu,t,T),  (5)

where P, Q, |u|, and argu are fitting constants, &
=+/f (fin V/cm), and T is the temperature in °K. F
describes the periodic Schottky deviations and it
consists of a periodic term F, and a monotonic term F;.
Although most investigators have used only the periodic
term Fs, the addition of the monotonic term F; could
possibly affect the results because of its significant
dependence on f. Therefore, in the mock experiment,
the data-reduction method was performed both with
the combined Fi4F, terms as well as the standard
method using only the F term.

The expressions describing the F; and F; terms are

Fy=(|n]/T)A(£) sin[R(8)+argu], (6)
Fi=ul’g(®)+h1(8), )
where
A(H==1.3X107°[C ()7 ]g™", ®)
C(£)=~1.007(1—0.079 In§), )
357.1 44-4C (%)
R(§)~ — +%[tan*lc(£)+c ® 1n—(—], (10)
g 14-4C(8)?
g(£)~—0.434[1— (5.23X1073/T) £17], (11)

h(E)~(1.957/T?) 8. (12)
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III. RESULTS

Figure 1 is a plot of the numerically generated
periodic deviations from .a box-model® metal with a
surface inner potential W,=15 eV. The “x” marks are
the reduced numerical data and the solid curve is the
Miller-Good theory curve given by Eq. (6). The
amplitude and argument of the surface reflection
coefficient used in Eq. (6) were obtained by a least-
squares fitting procedure using linear fitting parameters

and the F, term. These values are designated |u|1inear -

and arguiinear, respectively. (The F; term was neglected
here. Other methods are described later that use non-
linear fitting parameters and include the F; term.) It is
seen that the field dependence of the numerically
generated deviations (using the box model) is in good
agreement with that described by Eq. (6). In particular,
the anomalous rise in the deviation amplitude with field
that was experimentally reported for real metals®* is
not observed. Consequently, this particular discrepancy
between the Miller-Good theory and experimental
behavior appears to lie in the surface-potential model
used (i.e., the relative energy independence of the box
model) rather than other mathematical approximations.

While the analytic expression [Eq. (6)] adequately
describes the form of the deviations from a box-model
metal, the amplitude and argument of p that must be
used to fit the mock data do not agree with the antici-
pated values obtained from Miller and Good’s analytic
expression for u [Eq. (13)].

Hrealg(Hl)(Z) (Z)+7:H1(2) (Z))/
(—H:D (2)+iH oD (2)) | c=ewo—1i2,  (13)

where H;(z) are Hankel functions and the inner
potential W, is expressed in Hartree units (A=m=e
=1).1% In fact, the best fit values from Fig. 1 are
| 4] tinear="0.28 and arguiinear= —0.46, compared with
the theoretical values (obtained from Eq. (13) using
W.=15 eV) of |u|res1=0.22 and argurea=—0.19.
Similar comparisons were made for box-model® metals
with W,=10 and 20 eV. The resultant corrections to
the experimental surface reflection coefficients (|| iinear
and arguiinear) that must be used to obtain the real
values (|p|rear and argurea) are given by Eqs. (14):

Iﬂlrealzglﬂl linear+0.01 ) (14&)
aArgireal= arguiineart 0.27 (rad) . (14b)

The experimental values of the surface reflection
coefficient |u| recently reported®* for several metals
were corrected using Eq. (14a), and the corrected values
were used in Eq. (13) to estimate the surface inner
potentials W ,. The results, which are given in Table I,
now show rather close agreement with bulk inner

15 Numerical integration of the Schridinger equation in the
surface region for several values of W, resulted in values of the
reflection coefficient |u| substantially the same as that given by
Eq. (13).
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TaABLE I. Corrected surface reflection coefficients and their
corresponding inner potentials in the surface region for several
refractory metals.

Metal | 12 Iexp (Wa) uncorr‘l (Wa) cox'rn' (Wa) cale Nfreeb
Mo 0.26° 22 11 124 1.2
Re 0.29¢ 29 14 16¢ 1.9
Ir 0.31f 35 16 162 2.3
Ta 0.36" 52 24 10 7.3
Nb 0.35" 50 23 131 6.7

a See Egs. (13) and (14).
b See Eq. (4), Ref. 2.

¢ See Table I, Ref. 2.

d Reference 9.

e Reference 10.

f Reference 3.

e See Table I, Ref. 16.

b Reference 4.

iL. F. Mattheiss (Private communication).

potentials obtained from band-theory calculations for
Mo,? Re,® and Ir.!® However, experimental results of
Ta and Nb* still appear too high compared to some
unpublished recent band-theory calculations.!” Because
the inner potential W, is the sum of the Fermi energy
Eyr and the work function ¢, published work functions
and the corrected W,’s in Table I can be used to obtain
an estimate of the Fermi energy Er. Analyzing this in
terms of the free-electron-gas model, the effective
number of free electrons per atom (Nt..) in the surface
region can be estimated. The values of N, so obtained
for the metals checked are tabulated in column 6 of
Table I. It is to be noted that, contrary to the cor-
relation suggested by D’Haenens and Coomes? and used
by Smith,'® these corrected values are not the same as
their group numbers in the periodic table.

IV. EXPERIMENTAL ANALYSIS PROCEDURES

While the least-squares data-reduction methods most
often used to analyze periodic deviations have given
equal weight to all experimental current densities, they
have the inherent limitation that the relative error in
F, will appear larger at low fields since the amplitude of
F, increases with field. In order to give the same relative
error to each period, the deviations data can be nor-
malized with respect to temperature and amplitude as
follows:

M(&)=[T/A(&)]ogrj(§)—P—(Q/T)&], (15a)

where P and Q are the values of the fitting parameters
obtained from the first step of the data-reduction
analysis such as that described in Sec. ITI. These values
of M (&) are then treated as new data that should have
the form shown in Eq. (15b):

N (&)= |ulnorm S[R(£)+argunorm].  (15b)

Equation (15b) is least-squares fitted with linear fitting
parameters to the values of M (£) given in Eq. (15a).

16 0. K. Andersen and A. R. Mackintosh, Solid State Commun.
6, 285 (1968).

17 L. F. Mattheiss (private communication).

18 J. R. Smith, Phys. Rev. 181, 522 (1969).
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|4 norm and argunorm are then obtained from those
linear fitting parameters. The resultant corrections to
the normalized experimental surface reflection coeffi-
cients (|u|norm and argunerm) that must be used to
obtain the real values |u|rear and argu.c. are given by
Egs. (16):

(16a)
(16b)

i” [ real™= % IM ! norm+0~02 5
Arglreal = al‘g#mm-{- 0.13 (rad) .

It is seen that the corrections necessary for the
normalized values [ Eq. (16)] are slightly less than those
for the usual least-squares fitting values given in Eqgs.
(14). Furthermore, when the least-squares analysis with
F, was done with nonlinear fitting parameters and the
usual one-step procedure (non-normalized), the magni-
tude of the surface reflection coefficient |u| was 159
greater than that obtained using linear fitting param-
eters. However, the magnitude of u obtained from the
two-step procedure [using the normalized expression
shown in Eq. (15b)] was the same as that shown in
Eq. (16a). In addition, when the monotonic term F;
was included in the usual one-step procedure, even
greater discrepancies between the real and fitted values
of u were observed. However, inclusion of F; in the
two-step procedure caused essentially no change.
Because the values of u obtained from the two-step
procedure [using Eqs. (15)] were essentially the same
in all three cases, the analysis procedure using the two-
step data-reduction method might be more advantage-
ous for experimentalists than the previously used one-
step data-reduction analyses.

V. DISCUSSION

Because of the relatively large difference between the
values of the surface reflection coefficient obtained by
curve fitting and those obtained by theory® (almost
259%,), one can speculate on the source of error in the
analytical approximations used in the theory.® First,
Miller and Good have stated that the amplitude of the
periodic deviations [see Eq. (8)] in their calculation is
low by about 109, and the phase [see Eq. (10)] is off
by less than 39, because of specific approximations in
averaging the transmission coefficient D(e,f) over the
energy e. Apart from the stated 109, error, a numerical
check of their analytic approximation of the magnitude
of the barrier reflection coefficient |\ | [Eq. (14), Ref. 5]
shows an additional error estimated to be about 109,
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(These numerical calculations were made for an average
energy of 0.01 eV above the top of the barrier and for
an average experimental field>* of 10° V/cm.) This
error increases rather sharply ‘with energy; the effective
energy bandwidth for the transmission resonance
observed in periodic deviations, however, is only about
0.02 eV starting at the barrier maximum, as can easily
be seen in Fig. 6 of Ref. 14. The above calculations also
show that this error in || increases with decreasing
field but is compensated by a smaller interference band-
width that decreases with decreasing field. Additional
error in the analytic expression® could be due partially
to the assumption that the surface reflection coefficient
u is energy-independent and small compared to unity
and to the truncation of the transmission coefficient
expansion given in Eq. (17):

D(ef)= (1= )= [u]) (1= [A] |u]5
X[1+2 ;f(—rxylncosnm, (17)

where §=arg(\*u), A=\(¢,f), u=u(e,f). Only the case
where n=1 was considered,” whereas the n=2 term
contributes at least a few percent to D(e,f) in the
resonance energy region. It appears, therefore, that the
259, discrepancy between the analytic expression and
these calculations is quite plausible.

VI. CONCLUSIONS

In summary, the experimentally observed?4 anomal-
ous rise of |u| with field is probably due to real surface
potentials that give rise to u reflection coefficients that
are more energy-dependent than the u obtained from
the box model. The form of the Miller-Good expression
[Egs. (5)-(12)] is valid for the box-model potential.
The values of |u| obtained from the expression using
least-squares data-reduction methods, however, are ap-
proximately 25%, too great and the values of argu are
low by as much as 0.3 rad. Last, most of the corrected
estimates of the surface inner potentials Wk obtained
from periodic deviations experiments are now in good
agreement with the values calculated from bulk band
theory.
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